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ABSTRACT

The goal of this research is to modulate the dynamic stiffness profile of a brushless linear
DC motor. There is a great deal of research demonstrating the critical role the dynamic
stiffness of a machine tool plays in machining processes. Depending on the operation
performed and the material of the machined part, different profiles of dynamic stiffness
result in varying work piece surface finish, stability margins and process efficiency.
Currently, the dynamic stiffness of a machine tool has been strictly dependent on its
physical composition. Consequently, the machining process is designed around a machine
tool’s existing dynamic stiffness. The ability to change the dynamic stiffness of linear
drives employed as main feed mechanisms will provide tremendous flexibility to machine
tools by allowing the dynamic stiffness to be designed around the desired process.

This research includes performing comprehensive system identification of the controller,
amplifier and motor system, developing analytical results varying controller parameters to
change resonant frequencies and amplitudes of the stiffness profile. Experimental data are
obtained for comparison to predicted results. The resultant stiffness of the controlled
system is analyzed to determine the relative success of the control system. In addition,
several alternative controller designs are developed and analytically studied for possible
future implementation.
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SUMMARY

The goal of this research is to modulate the dynamic stiffness profile of a
brushless linear DC motor. There is a great deal of research demonstrating the critical
role the dynamic stiffness of a machine tool plays in machining processes. Depending on
the operation performed and the material of the machined part, different profiles of
dynamic stiffness result in varying work piece surface finish, stability margins and
process efficiency. Currently, the dynamic stiffness of a machine tool has been strictly
dependent on its physical composition. Consequently, the machining process is designed
around a machine tool’s existing dynamic stiffness. The ability to change the dynamic
stiffness of linear drives employed as main feed mechanisms will provide tremendous
flexibility to machine tools by allowing the dynamic stiffness to be designed around the
desired process.

This research includes performing comprehensive system identification of the
motor controller, amplifier and motor system, developing analytical results varying
controller parameters to change resonant frequencies and amplitudes of the stiffness
profile. Experimental data are obtained for comparison to predicted results. The
resultant stiffness of the controlled system is analyzed to determine the relative success of
the control system. In addition, several alternative controller designs are developed and

analytically studied for possible future implementation.




CHAPTER

INTRODUCTION

The goal of this research is to modulate the dynamic stiffness of a linear brushless
DC motor. The ultimate objective in developing this technology is to optimize the
dynamic stiffness of a particular machining process by employing linear motors and
controls as main feed mechanisms for machine tools.

Currently, the pool of research suggests that the dynamic stiffness of a machine
tool has a dramatic effect on machining performance. The ability to shape the dynamic
stiffness profile of a machine tool to optimize performance and efficiency for a particular
machining process will greatly enhance the flexibility of a given machine. In the past, a
process designer could only work with the given dynamic stiffness of the machine being
used. If the dynamic stiffness was not appropriate for the process being considered, the
option was to perform time-consuming and costly modifications to the machine tool itself
or to use a different one altogether.

In recent years the technology of linear direct drive motors has developed
adequately and will eventually lead them to serve as mainstream feed mechanisms in
machine tools. While there are many inherent advantages to using linear motors in

machine tools, being able to shape the stiffness profile of a linear motor could




revolutionize the machining industry by optimizing stiffness for a given process and
providing immense flexibility to one machine tool.

Recent research conducted by Alter concluded that dynamic stiffness of a direct
drive linear DC motor can be increased by the use of an optimal control scheme (1). This
thesis has somewhat different goals and employs somewhat different equipment. First,
the present research will implement control with a DC brushless motor. Brushless motors
have fewer limitations in terms of mechanical properties and electrical interference that
make them more likely to be used in industry. A brushed motor is limited in its speed
range by commutation arcing, commutator bar-to-bar voltage, and by brush surface speed
(2). Also, the goal of the current research is not only to increase dynamic stiffness at
every frequency, but to affect the shape of the dynamic stiffness frequency response. This
shaping includes reducing or moving resonant peaks. It is important to distinguish this
work from (1) in that no implementation directly involving a machining process was

conducted; the linear motor was analyzed apart from the machining process.

Problem Statement

In this research, a number of tasks were undertaken to show that the dynamic
stiffness of a direct drive linear motor can be changed without physically altering any
hardware. The following subsections briefly describe the major tasks that were required

to successfully complete this research.




System Identification

Prior to designing or applying any control to a system, one must be able to identify
the parameters of the process and obtain a reasonably accurate mathematical model of the
system. This research presents a logical and straightforward approach to perform a

mathematical system modeling of the controller, motor and amplifier system.

Model Verification

To ensure that a reasonably good model has been formulated, tests were
performed to compare experimental results with those predicted by the model. Such

comparisons were undertaken in both the time and the frequency domains.

Use of Existing Control Structure to Modify Stiffness Profile

Once an accurate model was obtained and verified, tests were conducted to show
how selection of control gains on the existing control structure can approximately meet a
target shape for the dynamic stiffness profile by altering the magnitude and frequencies of

resonant peaks.

Develop Several Control Schemes for Future Use and Perform Theoretical Analysis

In addition to designing gains for the fixed architecture structure of the motion
controller, several other control designs were developed and analyzed for future
implementation. Control methods examined used disturbance feedforward

methodologies and optimal control design techniques.




CHAPTER II

LITERATURE REVIEW/BACKGROUND

In order to provide a background of the system being used, the research goals and
related concepts, the following sections briefly preview the theory of linear motors and
the mechanical concept of dynamic stiffness. To serve as motivation for the work of
modulating dynamic stiffness, current research is cited that demonstrates the importance
of dynamic stiffness in the machining process. In addition, examples of the current use of
linear drives in industry and research on them are presented. Lastly, to serve as a basis
for later sections, general descriptions of the control strategies attempted in this and other

related research are presented.

Brushless Linear DC Motors

The technology of linear motors has matured rapidly within the last decade.
Initially, several points regarding terminology must be clarified as they often cause
confusion. Because brushless DC motors must provide a commutated or changing signal
to the coil to generate an electromotive force, they are often referred to as AC motors. In

both DC and DC brushless motors, the motor produces an electromotive force by the




current it develops acting perpendicular to its magnetic field. To continue developing the
force, the electric field has to be kept approximately perpendicular to the magnetic field.
The process of changing the current flow orientation in the different motor phases is
called commutation. This is the point where DC and DC brushless motors diverge. In
DC motors, as the armature moves, current flows to the appropriate coil by means of
conductive brushes and commutation bars. In brushless motors, the current is kept
perpendicular to the magnetic field by splitting the current into phases based on electronic

switching and position sensors.

Motor Theory

VCMD

Figure 2-1. Motor Electrical Circuit for Permanent Magnet Motor.

Electrically, a motor coil consists of an inductance and a resistance as shown in
Figure 2-1. The differential equation for Figure 2-1 is given by (2-1) where Veump is

source voltage, i is current, R is resistance and L is inductance.




. d .
V=iR+ LE(I) (2-1)

Rearranging and taking the Laplace transform of (2-1), one can obtain the transfer
function from voltage input to current output given by (2-2). This transfer function shows

how current is developed from a command voltage to the motor.

RO) = ! (2-2)
V(s) Ls+R

To understand how the generated current in the coil becomes a force to drive the
payload, one must examine basic magnetic theory. If a straight conductor of length, ¢ (in
meters), carries a current, i (in Amperes), through an external magnetic field, B (in Tesla
or Newtons/Amp-m), the force on that current is given by (2-3) (11). The cross product

in (2-3) implies that force is maximized by keeping the current (i) normal to the magnetic

field (B).

F=i/xB (2-3)

To fully understand how the generated force of a motor changes with movement,
it is useful to examine its back EMF (electromagnetic force) wave form. When the
current source is removed from the coil and it is externally driven at constant velocity

across alternating magnetic polarities, an alternating voltage is generated. This voltage is




known as the back EMF and its magnitude is proportional to the coil velocity (3). Figure
2-2 illustrates the concept of an alternating back EMF for a two-pole motor with a single
phase. The peak torque per unit of current of a motor (peak force in the case of a linear
motor) is achieved when a potential is applied to the coil at the rotor location coinciding

with the peak of the back EMF wave form.

Rotor Position (degrees)
q 18 60

Volts

Figure 2-2. Back EMF Wave Form of a Motor Coil.

Figure 2-3 shows the schematic delta configuration for a three-phased coil, spaced
120° apart. Figure 2-4 shows the back EMF seen by each of the three phases (JAC
indicates the coil between nodes A and C of Figure 2-3) when such a motor is externally

driven at a constant speed.




Figure 2-3. Configuration of Three Phase Coil Phased 120° Apart.

(PAB ;2BC 2CA . 2AB . ;2BC

120 240° 360° 120° Armature Posltion

Figure 2-4. Back EMF Wave Form for Three-Phase Winding.

Commutation

The goal of commutation, based on the brief discussion of the last section, is to
keep the current in the motor coil perpendicular to the magnetic field. The windings of
the coil are normally phased 120° apart and current must be continually switched to the
different motor phases to sustain motion. The commutation points (i.e., the timing of

current to the respective phases) for the motor in Figure 2-4 are shown by the shaded




areas in Figure 2-5. From Figure 2-5, it is clear that the generated back EMF and
accordingly, the torque produced, vary by 50% from the peak value. This variation is
known as torque ripple. To reduce torque ripple, one can double the frequency of
commutation to six times per 360° of rotation by using both the positive and negative half
of the back EMF wave form as shown in Figure 2-6. The resulting torque ripple is

reduced to 13%.

Volts

120° 240° 360° 120° Armature Posltion

Figure 2-5. 3-Step Commutation Points for a 3-Phase Motor.
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BAB . . . . . . .
) gzec igCA 228 ;@80 TORQUE
e e ] oy o /N 0 RIPPLE=13%

Volts

t20° 240° 360° 120° Armature Position

Figure 2-6. 6-Step Commutation Points for a 3-Phase Motor.

The two most common types of commutation are six-step commutation based on
Hall Effect sensors and sine wave commutation based on encoder position. In Hall Effect
commutation, a circuit board embedded in the coil assembly contains small Hall Effect
Device (HED) chips. The HED sensors detect changes in the polarity of the permanent
magnet track and switch the motor phases every 60°. Figure 2-6 shows the
synchronization for six-step commutation. In sine commutation, a linear encoder used for
position feedback is also used to commutate the motor. In general, sine wave
commutation provides for smoother motion and less force ripple because the current is
continuously kept perpendicular to the magnetic field by updating the phasing each
encoder count. Depending on encoder resolution, this is significantly more often than

commutation once every 60° as in six-step commutation. On power up, initial phasing is
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determined by one Hall state change. Subsequently, the motor phase angle is

incrementally advanced with each encoder pulse.

Modeling Brushless DC Motors

The development of accurate models for brushless DC motors (BDCM) has been
the subject of extensive research. The switching of current to the different phases as
described above presents a challenge to standard modeling of electromechnical systems.
Pillay (4) showed that there are major differences in the models used even between six-
step commutation and sine wave commutation for permanent magnet brushless motors.
To accurately describe the dynamics of a BDCM that uses sine wave commutation, a

second order model is needed, while six-step commutation requires a third order model.

Linear Motor Description

Linear motors follow the same concepts as the rotary motors described above,
except for the fact that the motor is “turned inside out” and “unrolled.” The permanent
magnet that is normally the rotor portion of a rotary motor now becomes the stationary
track of the linear motor. The coil that is normally the stator or fixed portion of the rotary
motor now becomes the “forcer” of the linear motor and moves along the permanent
magnet track. Figure 2-7 shows the configuration of the linear motor described here.
Figure 2-8 shows the general concept of force generation in a permanent magnet linear
motor (5) where the magnetic flux field is represented by dotted lines and the current

flows in the direction of the arrows.
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Forcer

Forcer

Permanent Magnet Track

Permanent Magnet Track

Figure 2-7. Linear Motor Layout.

Figure 2-8. Force Generation for Linear Motor.

Some brushless linear motors have fixed coils and a moving magnet. The main
advantage of the moving coil is that the stroke length of the motor can be increased by
simply adding more permanent magnets, whereas increasing the stroke length of the

alternative configurations requires a complete reconfiguration of the windings.
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The other obvious difference between linear and rotary motors is that the position
of the forcer along the track clearly does not lend itself to measurement in degrees as in a
rotary motor. However, in order to split the current into each phase of the forcer
windings, position must somehow relate to the phase angle relative to the locations of the
north and south poles of the permanent magnets. The magnets are oriented such that a
pole change from north to south is at a fixed interval. This fixed distance is equivalent to
360° or one complete “cycle.” In this way, with each step of the encoder, the phase angle

is updated by a fixed amount.

Advantages of Linear Motors in Machining

In view of the general concept of operation of linear motors described in the
previous section, one can logically conclude some of the advantages of linear motors in
machining. Some advantages of a direct drive are its precise positioning anywhere in the
range of travel and the elimination of drive motors, couplings, gear shafts and slides. The
elimination of the conventional ballscrew eliminates hysteresis and backlash. Because
there are fewer moving parts, there is less hardware to break down and fewer
maintenance requirements. The relative accuracy of linear drives as compared to belts,
ballscrews and rack and pinions is extremely high. Table 2-1 shows a relative

performance comparison of currently available linear motion devices as shown in (6).
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Table 2-1. Relative Merits of Linear Motion Devices.

[Performance Units Linear Motor Ball Screw Rack and Pinion Belt
Accuracy um /300 mm 0.5 10 50 100
Repeatability um 0.1 5 25 50
Travel meter 30 3 30 5
Max Velocity meter / sec 10 1 2 5
Max Acceleration g 20 7 5 3
Settling Time msec /um 10 150 300 500

Because a linear drive motor can be made accurate to within one encoder count,
its resolution for positional accuracy is bounded only by encoder resolution (7). They
also provide higher velocity and acceleration. In some applications, the use of linear
motors has increased velocity by a factor of thirty, increased acceleration by 5 g and

exhibited stiffness seven times greater than that of a ballscrew (8).

Linear Motor Disadvantages

While there are many advantages associated with the use of linear motors, there
are also several drawbacks. One drawback is the high levels of heat generated during
use. In a rotary motor, airflow generated by coil rotation carries this heat away. The high
levels of heat generated by a linear motor require a method of cooling such as air cooling
or heat exchangers. Another disadvantage to linear motors is that the strong permanent
magnets attract ferrous dust and chips. Therefore, applications that involve ferrous
metals require shielding of the permanent magnets. Lastly, the average cost of linear
motors is nearly twice that of conventional linear motion devices.

One of the problems in developing linear motor technology for machine tools is

that these drives cannot serve as “drop-in” replacements for other feed mechanisms in
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existing machines. Instead, linear motors must be incorporated into the initial design of a
machine (8) to provide for the control architecture and space for the somewhat bulky
permanent magnets and bearing track. Also, since there is no high-impedance mechanical
buffer between the motor and the load such as that between the ballscrew and drive

motor, variations in the load can greatly influence performance (9).

Uses in Machining Applications

Linear motors have recently received substantial attention in the area of machine
tool design. A recent review of machine tool way design (9) called the linear motor a
potential replacement for the ballscrew. Because of the many advantages previously
mentioned, several machine tool manufacturers, including Ex-Cell-O have turned to the
use of linear motors for main feed mechanisms.

The Ex-Cell-O HXC 240 high speed machining center introduced in 1993,
employs a linear motor as its main feed drive. The machine was an improvement over
conventional machines with respect to acceleration, velocity and accuracy. Consequently,
the machining time of similar processes that had been performed conventionally were
reduced by 30% on the new machining center. This particular machine has peaked the
interest of automotive manufacturers around the world. Ford, General Motors, Mercedes-
Benz and Saab have all placed orders or currently use this machining center for various
machining applications (10). Machine tool controller manufacturer, Fanuc, recently

purchased patents from linear motor producer, Anorad--an indication that broader use in
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industry is likely in the near future. Ingersoll-Rand also produces linear motor-based
machines for engine block and cylinder block applications.

In general, applications most suited for the use of a linear motor-based machine
tool are those with light loads. In order to create enough force for heavier loads, higher
machine mass results from more powerful permanent magnets required to develop higher
forces. In some applications where higher force levels are required, researchers have used
several linear motors in parallel to increase the usable load of the tool (8). Doing so is far
simpler when using linear motors, because linking them involves only integration through
a control structure. To link other linear motion devices in this way would involve

complicated mechanical interaction through gearing.

Dvynamic Stiffness

The previous section serves as a motivation for the use of linear motors in
machine tools. This section provides a framework to make the connection between the

use of linear motors and dynamic stiffness.

Concept of Dynamic Stiffness

A simple model to illustrate dynamic stiffness is a one degree of freedom spring-
mass-damper system like the one shown in Figure 2-9 . For the static case, the response
of the system is given by the familiar linear relationship of Hooke’s Law (11) given by

(2-4).
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F=KX (2-4)

At low frequencies, close to the static case, inertial effects of the mass are
insignificant, but as the frequency of the excitation force increases and approaches the
natural frequency of the system, the displacement of the mass is no longer described by
the simple spring relation for static loads. At higher frequencies of the forcing function,

the relationship is represented by the differential equation of (2-5).

X
X —>»
A
s v
A F
_/W\.__.
N

Figure 2-9. One DOF Model for Dynamic Stiffness.

MX(t) + bx(t) + Kx(t) = F(t) (2-5)

In the frequency domain, by taking the Laplace transform of (2-5), the general relation

between the force and the displacement is described by:
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F(s)
KD(S)ls:ja) = % = Kranc +bs +Ms =i (2-6)
s=jo
. F(jo .
Kp(jo) = %iw); = Kgranc +hj@ - Mo’ (2-7)

Dynamic Stiffness Implications on Machining Performance

Dynamic stiffness is the primary issue in designing and analyzing many
machining processes. Issues such as stability, surface finish and process efficiency

depend primarily on the dynamic stiffness of the tool and work piece.

Stability

The most obvious effect of dynamic stiffness on machining performance is that of
stability. Dynamic stiffness has a profound effect on stability of a particular machining
process. In work conducted by Rivin and Kang (12), a deliberate reduction in tool
dynamic stiffness was shown to improve the stability margin of the cutting process for a
slender bar. Chatter develops easily when turning slender parts on a lathe because of low
stiffness and damping of the system (12). By modeling the system using frequency
analysis, the effective stiffness can be determined. Figure 2-10 shows the cutting process

as a two-degree-of-freedom (DOF) system.
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MWorkpiece
KC L:__I CC .
K,, = Work Piece Stiffness
C,, = Work Piece Damping
MTooI .
K. = Process Stiffness
K e C¢ = Process Damping

K; = Tool Stiffness

7 C,= Tool Damping

Figure 2-10. 2 DOF System for Slender Bar.

Experimental data showed that chatter vibration frequency changes as the tool moved
along the bar and was seen at a maximum when the resulting bar stiffness was minimum.
The results of the research showed that once effective cutting stiffness is found, values for
optimal effective cutting damping and optimal tool stiffness can be calculated by solving

the equations of motion for the two DOF model in Figure 2-10. (12).

Yen and Hsueh (13) have conducted more research on the effect of dynamic
stiffness on chatter vibration in inner-diameter cutting. It was shown that chatter
vibration could not be suppressed by varying rotational speed. Changing speed affected
only the regenerative waviness in the surface finish. One method proposed to suppress
chatter was by shifting the resonant frequency to a value outside the operating range. At

the m™ natural frequency,
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[K]{xXm} = 0’ [M]{Xm} (2-8)

From (2-8), it may be determined that a change in either [K] or [M] yields a
different resonant frequency. Looking at (2-7), one can see that such a change also results
in a different dynamic stiffness profile. This technique was applied using finite element
analysis to design the tool turret at an optimal thickness to yield the best dynamic
stiffness.

Research conducted by Elsayed introduced the idea of process damping in the
chatter stability equations (14). There is a discrepancy between the stability diagrams
normally associated with chatter and experimental observations. Elsayed addresses this
difference by a phenomenon known as process damping, that accounts for cutting speed.
Process damping yields a force that is generated from the interference between the tool
and the previously cut surface. The amount of interference is a function of the tool relief
angle and the surface wavelength. Surface wavelength is related to cutting speed by the
equation: A = mdn/f, where A is the wavelength, d is part diameter, n is the part speed
(rev/sec) and f is the vibration frequency. The calculation of process damping and the
resulting sfability diagrams are dependent on the knowledge of the tool/work piece
system’s dynamic stiffness. Results showed that process damping is, indeed, dependent
on cutting speed. In a facing operation, the cutting speed decreases as the tool moves
toward the center of the work piece. In the center, the cutting velocity is essentially zero
and the system is infinitely stable. The technique may be used to predict the diameter

corresponding to the stability limit. The ability to vary dynamic stiffness as the




21

machining progresses through various diameters can be used to ensure stability of the
process where it might not otherwise be possible.

Chatter may actually result from employing linear motors as feed mechanisms.
Strong dynamic feedback between the machining process and the linear drive can lead to
self-excited chatter. To reduce chatter and the effect of disturbance forces on tool
position, it is desirable to increase dynamic stiffness as much as possible (15). Alter and
Tsao implemented an optimal control scheme using force and position feedback to
maintain stability and provide adequate dynamic stiffness for the turning process. Figure

2-11 illustrates the feedback strategy they employed.

F -
o3| Cy Cu |€—| AD | Force C | Cutting | ——
Sensor l Process
-1
r o y
— D/A }— Motor
Coo Servo Amp Mechanical >
{ Position |
Cy = Position Feedforward Encoder

Cy, = Cutting Force Feedback
C;, = Position Feedback

F¢ = Cutting Force

Figure 2-11. Alter and Tsao’s Setup (1).
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Other Measures of Machining Performance

In addition to its effect on stability, dynamic stiffness is a determining factor for
machining performance measures such as efficiency and surface finish. It also is rooted
in the solutions to practical problems such as tool breakage.

In one case study, a system consisting of a motorized spindle, tooling, part and
part-clamping apparatus had a frequent tool-breakage problem (16). Dynamic stiffness of
the spindle, tool holder and part was measured. The stiffness of the tool holder was
significantly less than that of the part being machined. Because of this differential
stiffness, the part was far less susceptible to vibration at resonance than the tool. The
investigation indicated that the breakage was being caused by an improper spindle
mounting arrangement.

In multi-axis grinding, research by Kurfess and Jenkins has shown that when
conducted at resonant frequencies, grinding produced better surface finish in some cases
(17). By intentionally machining at resonant frequencies where dynamic stiffness is at a
minimum, research showed a decrease in surface roughness for some materials. This is
explained by revisiting the well-established correlation between surface finish and
minimal force variation. With a reduced stiffness, for each perturbation of the machined
surface, the corresponding force perturbation is reduced. By substituting (2-9) into (2-7),

one can see that dynamic stiffness is minimized at resonant frequencies.
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STATIC
Ksrame 2-9
M (29)

n =

Demands for increased efficiency in machining has brought about the concept of
“near net shape.” This cdncept proposes to reduce the amount of work piece material
wasted as chips by forging or casting components to their near-finished size. The recent
emphasis on such a process has forced machining to be done in one pass, requiring higher
depths of cut. Elbastawi and Sagherian have investigated the problem of surface errors
associated with such larger depths of cuts on the end-milling of thin-walled sections (18).
One of the primary causes of surface errors during such processes is that the dynamic
stiffness of the work piece continuously changes as machining progresses. The results
obtained showed that the best surface finish was achieved when the milling tooth
frequency is equal to the natural frequency of the most significant spindle mode. This
frequency corresponds to the lull in dynamic stiffness for the tool.

In the search for higher efficiency in the machining process, Lee and Furukawa
(19) have derived a model to determine required parameters in order to perform a plunge
grinding roughing operation utilizing full spindle motor power. In order to do this within
the constraints of stability, a model was developed to calculate maximum depth of cut
and recommended tool stiffness.

The main idea illustrated by the previous section is that, at present, the machining
process is designed around the dynamic stiffness of the available tools. For example,

consider a case when one desires to optimize surface finish for a given process and




24

determines that the resonance grinding as described in (17) is to be used. With current
technology, the resonant frequency must be selected based on the fixed dynamic stiffness
response of the machine tool being used. In the future, one could move the resonant
response of the machine tool to employ resonant grinding at a higher spindle speed,
optimizing both surface finish and efficiency. As such, the goal of this research is to
provide the ability to design the dynamic stiffness around a given desired process.

Having provided background on linear motors and dynamic stiffness as well as
motivation for the work of modulating dynamic stiffness, the following sections will
address the general tasks associated with the completion of this research, including

system identification and general control approaches.

System Identification

Several methods exist for system identification. One such method is the analysis
of a discrete-time input and output stream using an autoregressive moving average
(ARMA) model that seeks to minimize the squared error between each actual output and
estimated output (20). One problem with this system identification approach in practice
is its dependence on the type of input and output being measured. For example, a pure
step input theoretically excites all frequency modes and provides adequate frequency
information to yield a successful model. In practice, however, a pure step input is not
achievable and the resulting response might lack some frequency modes. Therefore, a

method using a sinusoidal input to excite the system across a range of frequencies, is
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more likely to provide an accurate model for the frequency range of interest. The
following section describes how the frequency data are analyzed to obtain a useful model.

The method used to identify the system for this research was to take a set of
frequency response data and fit it to numerator and denominator polynomials of known
order. Frequency response identification was used because the plant and controller
dynamics are of a known order and structure and frequency response data were
reasonably simple to obtain. The process of fitting the data is best accomplished by a
least squares technique. This approach determines the transfer function polynomials of
known order and finds the minimum least squares solution to the polynomial of the same
order that fits the given data. The algorithm used is based on the damped Gauss-Newton
Method. If a complex frequency response is given by h(jw) at frequencies w(k), A(w(k))
and B(w(k)) are the Fourier transforms of the candidate denominator and numerator
polynomials, and wy(k) is a weighting of the importance of convergence for each
frequency, then the algorithm is iterative to minimize the sum of the squafed eITor as

shown in (2-10) (21).

B(o(k)|’

2-10
Ala(k)) @10

min zn: w, (k)lh(k) -

The approach for system identification used in this research resembles that used
by Alter inasmuch as each component was isolated and analyzed and later adjusted to fit

the frequency response of the overall model (1).
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In one approach, system identification and control synthesis are combined into a
single problem, using statistical input and output data and spectral analysis (22). This
technique results in a “black box” controller over which one has very little control in
establishing the order or structure. Since the linear motor used in this research has a
fixed-structure controller, the combined approach to system identification and control was
not attempted.

Once an adequate model is developed, the next major subtask is the development

of a control strategy.

Control Strategies

A vast amount of research exists in the field of motion control for servo drives.
The following sections present several options for motion control and disturbance control.
In addition, the limited existing research on dynamic stiffness improvement of linear

motors is discussed.

Dynamic Compliance Control as Disturbance Rejection

Cutting forces in the machining process can be thought of as a disturbance in the
context of position control. The idea of disturbance rejection control has been studied at
length since it is a common control criterion for performance. Linear motors are
particularly susceptible to disturbances since they have no auxiliary mechanisms to
absorb the effects of disturbances such as the gearing found on a ballscrew drive.

Because disturbances have a direct effect on a linear drive, often the normal control
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routines can command input signals beyond the point of saturation. In one study, a group
proposed to employ a preview control for disturbances on a brushless linear motor system
to reduce the input commands while still attenuating the effect of disturbances quickly
(23).

The description of a generalized plant and controller with a disturbance input is

shown by Phillips and Harbor (24) .

D(s) !
R( ) Controller s C(s)
S : S
Ge(s) PR), —

A

H(s)

Sensor

Figure 2-12. Basic Structure of Feedback Control System with Disturbance.

By manipulating the diagram in Figure 2-12, one can obtain the transfer functions
from D(s), the disturbance input, and R(s), the reference input to the output, C(s). As

expected, Equations (2-11) and (2-12) share a common characteristic polynomial as their
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denominator. The output, C(s) is then, by superposition, additive as shown in Equation

(2-13).

€6 _1g)=—O8Cn _ 11
Re) V71566 H @1h
CS) _ 1 ()= G }
D(s) T =17 G.G_H (2-12)
C(s) =T(s)R(s)+ T,(s)D(s)
_ 1 (2-13)
C(s)= T76.6.H |GG .R(s)+G,D(s)

In the case of a machining system, dynamic compliance (the inverse of dynamic
stiffness) is Tq4(s) (i.e., the output of the system due to disturbance force). To maximize
dynamic stiffness, a control scheme should seek to minimize the effect of the disturbance
input. This can be accomplished in several ways. One way is to minimize the transfer
function from disturbance force, Fy, to position output in the design of the plant. If the
designer can change the parameters of the plant so as to minimize the norm of Gg(s), he
can reduce the overall magnitude of T4. In the case of the linear drive motor, we are
starting from an existing system and must accept the resulting dynamic compliance

transfer function. A second method for minimizing the effect of a disturbance on the




plant is by increasing the overall loop gain of the system by increasing the gain of G(s).

This concept is best explained by Ogata (25). As IGcGy-HI >> IG4l, Equation (2-12)
approaches zero. Some caution must be used when applying this method. First, as
already mentioned, one must make sure that an increase in G.(s) does not also increase
the gain of Gy(s) as this would increase the magnitude of the disturbance response. Also,
if the system under investigation has a high noise level, large control gains can cause
stability problems (24).

The last method is to directly address the disturbance transfer function by
developing a disturbance feedforward controller. If the disturbance is measured, then a
controller can be developed that will give a command input to the plant to cancel the
output produced by the disturbance, before it affects the plant. If the models of T(s) and
Tqy(s) are perfect and no saturation of the components occurs, the result will be to
completely cancel the effect of the disturbance. Manipulating Figure 2-13, one can
determine the new transfer function, T4(s) shown in (2-14). To minimize T4(s), one can
determine Gg4(s) to make the numerator of (2-14) equal to zero. The resulting

feedforward controller is given by (2-15).
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Figure 2-13. Plant with Measurable Disturbance and Feedforward Controller.
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There are several reasons that preclude G¢q from exactly canceling the effect of
the disturbance. Since G.Gn is normally a proper system (i.e., the order of the
denominator polynomial is of equal or greater order than the numerator polynomial), its
inverse is not a physically realizable system. Also, to exactly cancel out the disturbance,
the model for G, must be exact and the measurement of the disturbance must be

noiseless. If such an exact representation was available, no feedback control would be
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necessary. Lastly, even if G4 seems to analytically cancel out the disturbance, the control
may require large and rapid changes to the input signal that could saturate the actuator
and/or excite higher frequency modes (33). While there seem to be many reasons not to
expect the disturbance feedforward control to completely cancel the effect of
disturbances, applying such a controller can certainly attenuate the effect of disturbances
and should be considered as an early design step.

As mentioned, to employ feedforward control, system disturbance must be
measured, adding the expense of a sensor and related hardware. To prevent the
requirement of a disturbance sensor, other servo control research (26) developed a
disturbance observer based on the motor position output and the current generated at the
coil. The observer was then used to provide a feedforward disturbance controller with an
estimation of the disturbance.

The emphasis in the above discussion is on feedforward control for a measurable
disturbance. Parameter variation and model uncertainty can also be thought of as
disturbances to a system. As such, feedforward control can be valuable in compensating
for their effects. Uncertainties are obviously unknown, but often have bounds on them

over an operating range that allow some degree of analysis (33).

LOG/LTR Control

From the derived feedforward scheme described in the previous discussion, the
focus is now shifted on a more complicated control scheme known as the Linear

Quadratic Gaussian/Loop Transfer Recovery (LQG/LTR) method. The goal of this
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method is to design a compensator (K(s)) that, when applied to the system plant (G(s)) of
the general form shown by Figure 2-14, can “recover” a target feedback loop’s

performance characteristics arbitrarily well (27).

+  E(s) U(s) Y(s)
R(s) K(s) > G(s) >

A

Figure 2-14. General Form of the LQG/LTR System.

The formulation of this method is based on the linear quadratic regulator or LQR
control approach, a brief explanation of which follows based on (33). The state space
representation of the generalized single-input-single-output (SISO) system (depicted as

G(s) in Figure 2-14) under study is given by (2-16) and (2-17).

x(t) = Ax(t) + Bu(t) (2-16)

y(t) = Cx(t) (2-17)

The LQR problem solves the optimal state feedback gains, K¢ that minimize the cost

function given by (2-18). The command input vector to the system is given by u (u=-Kcx
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with no reference input) and z is an orthogonal transformation of the state variables
(z=Mx). The orthonormal weighting matrices, Q and R, penalize state error and large
control inputs, respectively. Kc is given by (2-20) where P¢ is the covariance matrix that
solves the Algebraic Ricatti Equation given by (2-21). The Algebraic Ricatti Equation
(ARE) is derived by performing a constrained minima problem for (2-18), the details of

which are contained in (20) and have been omitted here.

T
J=lim E{j (2TQz + uTRu)dt} (2-18)
0

For SISO systems (2-18) reduces to

T
J=lim E{ [z"Qz+ Ruz)dt} (2-19)
0

K.=R'B'P (2-20)
C C

A"P. +P.A-P.BR'B"P. +M'"QM =0 (2-21)
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The above description assumes that the outputs of the system are the states (full
state feedback). When the states are not available as outputs, one must design an
observer to estimate the states from the input and the output. The combined observer
controller is often referred to as a model based compensator or MBC (27). The MBC
contains a duplicate of the plant model with two feedback loops: one through a matrix, H,
of observer gains and one through matrix, G, of control gains as shown in Figure 2-15

where @(s) is the state transition matrix and is given by (2-22).

P(s) =(sI-A)™ (2-22)

Model-Based Compensator

K(s)
E- i Design Plant
; ‘ G(s
‘ B SR ( -). .......... ,
RO) . E6) ¥ |
+. E(s) 1 + g d(s) Z(S): G (S% B o ()l — ¢ |
i c a

Figure 2-15. Structure of Model-Based Compensator.

A widely used and accepted method of designing optimal observer gains, H, is

Kalman filtering. The dual problem of the LQR problem is the Kalman filter problem
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that seeks to minimize the error between the measured and estimated states. The
combination of a Kalman filter with an LQR controller is called a linear quadratic
Gaussian or LQG controller. A simplified explanation of Kalman filtering is presented
based on (33). Assuming a system is given by (2-23) and (2-24), where w and v are white
processes (i.e., zero mean and uncorrelated with time with a normal or Gaussian
distribution) affecting the control and sensor signals respectively. The covariances of w
and v are assumed to be greater than zero and are given by E{ww’}=W and E{vv'}=V.
Since the theory is statistically based and actual error between the state and Kalman filter

estimate cannot be measured, it is considered optimal on average only (28).

X(t) = Ax(t) + Bu(t) + Tw(t) (2-23)

y(t) = Cx(t) + v(t) (2-24)

The Kalman filter gain matrix is given by

H=PC'V™ (2-25)

where P is determined from (2-26), which is the equivalent algebraic Ricatti equation for

the observer error minimization.
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P,A" + AP, -P,C"V™'CP, +TWI'" =0 (2-26)

Although the LQG combines the optimal LQR with the optimal Kalman filter, the
resulting controller does not always provide for the best performance or stability (33).
The LQG/LTR controller is a special case of the LQG controller that chooses G and H of

Figure 2-15 in a special way.

R(s) Y(s)

Figure 2-16. Target Feedback Loop for LQG/LTR.

The first step of the LQG/LTR design process is to obtain a target feedback loop
as depicted in Figure 2-16 that meets the required stability, robustness and performance
characteristics of the closed-loop response. To choose the matrix H, Kalman filtering
techniques have been recommended by (27) and (33). In the Kalman filter synthesis,
first, set W = Wy + qZ, where X = £7 > 0 (Z=I for simplicity) and increase q arbitrarily
toward infinity. By increasing q, we are “telling” the observer that a greater portion of the
output variance is due to state variation and a decreasing proportion to measurement

noise (33).
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After the target feedback loop design satisfactorily meets performance requirements, the
LQR technique is used to choose the matrix of G in Figure 2-15. First, set I'=B and Q=L
By setting I'=B, the model based compensator essentially generates a stable inverse of the
design plant model and several controller poles cancel the plant zeros. For this reason the
plant must be minimum phase (i.e., have no zeros in the right half plane) to maintain
stability. The last step is to set R=pl, and reduce p arbitrarily close to zero (i.e. reduce
control cost toward zero). As p approaches zero, the overall transfer function of Figure 2-
15 given by (2-27) approaches that of the target feedback loop as shown by (2-28). This
is the so-called LTR result and shows that as the control cost is reduced, the output of

Figure 2-15 approaches the output of the TFL that was designed to meet specifications

27).

¥(s) = C(sI- A)"BG, (s~ A+BG, + HO)"'H (2-27)

})i_r)xg‘l’(s) =C(sI-A)'H (2-28)

While the method described above seems useful in obtaining a desired response, it
essentially doubles the order of the system. There are also more sophisticated ways of

choosing design parameters W, I' with augmented dynamics to shape the response,
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further increasing the order of the system. Several methods have been employed,
including (29) to develop a fixed-order LTR controller to reduce complexity and overall
system order, while still approximately obtaining the LTR result (i.e., recovering the
TFL). In another variation of the method, research conducted by Shafai, used augmented
dynamics in the model of the TFL to arbitrarily place the zeros of the plant (30) to
achieve the desired response.

Because future implementation of LQG/LTR control on machine tool feed drives
will most likely be facilitated by computer, it is useful to assess the LTR result in
discrete-time. Bainum and Tan (31) demonstrated that the LTR result is consistent when
implemented digitally.

The optimal control approaches described in this section make the presumption
that the control designer has the freedom to specify the order and structure of the
controller. The methods described in the following section take an alternate stance in

optimizing the controller of a fixed structure.

Parameter Optimization

The control problem is often constrained to fit a certain existing structure, as is the
case in this research--control is constrained to use the existing structure of the Aerotech
U-500 motion control card. In the previous sections, discussion focuses on the control of
stand-alone controllers without regard to operational constraints or structure. In the
methods lumped together under ‘parameter optimization,” one can take an existing

structure and optimize the adjustable parameters of the structure to most closely match
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the desired controller. For example, it was shown in (32) that, in certain cases, the Ho,
optimal control law can be fit to have the structure of the PID controller commonly found

in industry.

Method of Inequalities

One method of parameter optimization is called method of inequalities. It is
based on the idea that system performance is not related to a specific objective value, but
must fall between a set of boundaries. For example, an aircraft autopilot system might be

-constrained to maintain altitude within + 50 feet of a target altitude, but its maximum
climb rate is between a minimum and maximum value at a given altitude, representing
another constraint. In this way design specifications can be presented as a set of

inequalities in the form given by (2-29) as shown in (33).

e, (D <g;,t20,i=123,...,m (2-29)

where each ej(t) is a function of time representing plant behavior for one plant variable
that must meet the performance constraint of €. This method changes the control problem
from one of minimization to one of satisfaction of a set of inequalities. This is often a
more easily understood concept than other optimal control techniques that design an

objective controller. In the event that the objective cannot be met, one can loosen the
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restriction of the inequalities for the next iteration rather than redesigning the objective

controller as would be the next step in other optimal design techniques (33).

Constraints can result from physical limits of saturation on the input or input rate
of change. Limitations can also result if the model being used is valid for only certain
parameter values. Nearly any stability or performance measure can be placed in the
general form of (2-29). Let the vector of controller parameters in a fixed structure be
given by p with each constraint written in the form of a functional ¢(p) < 0. Suppose a
search yields a vector p resulting in a set, Sk, in which some but not all ¢;(p) are met. If
the next step of the search finds a set p**' for which more ¢;(p) are met, S**! represents a
boundary that is closer to the solution set that satisfies all ¢i(p). The process is repeated
iteratively until the set, S is reached. This concept is referred to in (33) as the ‘moving
boundaries’ process. There are a number optimization algorithms used to perform the

search that maximizes the number of ¢i(p) satisfied.

Edmund’s Algorithm

Another method of parameter optimization is called Edmund’s Algorithm. In this
method, the objective is to make the closed-loop transfer function for the system of
Figure 2-17 approach a target transfer function over a specified range of frequencies. The
algorithm solves for the numerator coefficients of the controller, K, in Figure 2-17 (33).

Let T be the closed-loop transfer function actually achieved by K where




and T, be the target (desired) transfer function. In order to obtain, T, a corresponding K,

exists, such that

GK,=T,(-T,)" (2-31)

It is assumed that K and K; share a fixed and known denominator. The goal of
the algorithm then is to determine numerator coefficients of K, that minimize the error

41
T=GK(I+GK)" (2-30)
| between T and T,
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Figure 2-17. Control Loop Structure for Edmund’s Algorithm.

This technique was investigated for the current research. However, when the linear motor

system was placed in the form of Figure 2-17, the resulting numerator coefficients are not
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fully assignable (i.e., only portions of the coefficients are affected by the available

controller gains). For this reason, the algorithm was not employed.

Related Research

The work of changing the dynamic stiffness of a direct-drive linear motor is a
fairly new research front. In research conducted at the University of Illinois, Alter
employed an H.. control scheme to maximize dynamic stiffness of a DC linear drive used
in a grinding application (34). Figure 2-11 shows the configuration for the entire system
employed. The Cg term represents the location of the H.. controller. Alter’s approach
increased stiffness of the system by a factor greater than two with such a control design
over conventional PID control. The goal of Alter’s research was to maximize stiffness
across the frequency range of operation by minimizing the H.. norm of dynamic

compliance.

Chapter Conclusion

This chapter has provided background information on linear motors, dynamic
stiffness and the general concept of system identification and several control schemes. In
addition, it provides motivation for the current research in modulating dynamic stiffness
of a linear motor for use in machine tools. With this background as a basis, the next

chapter briefly describes the instrumentation and equipment used in the research.
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CHAPTER III

INSTRUMENTATION AND EQUIPMENT

Equipment Description

The equipment under test was an Aerotech ALA10076 linear positioning stage
with a BLMFI-142A brushless linear drive, a BA-20 amplifier and a Unidex 500 Ultra
motion control card. The controller was interfaced with a Pentium 133 MHz processor.
The U500 Controller has the capability to perform sine wave commutation to split the
current command into its respective phases. In this configuration, the controller passes
the current commands for phase A and phase B while phase C is derived by the amplifier.
However, since this configuration yields two signals to the plant, the internal
commutation was deactivated for some tests in this research in order to allow analysis of
a single-ended command input to the plant. The BA20 amplifier has the capability to
perform commutation when it has access to the Hall Effect Device sensor signals.

Signal processing for system identification as well as data analysis were
accomplished using a DSP Technologies Siglab signal analyzer and Matlab-based
software. A Wilcoxon electro-magnetic vibration generator or “shaker” provided force

excitation across target frequency ranges.




Figure 3-1. Shaker/Stage Setup.

Dvynamic Stiffness Measurement

The method used to determine dynamic stiffness employed a vibration generator
or “shaker.” The shaker contains an outer magnetic portion with a coil traversing a
stationary inner portion, on which an accelerometer and force sensor are mounted. Siglab
can be set up to output a swept sine wave excitation across a desired range of frequencies
to the shaker. The inputs to Siglab for analysis are force (the system input) from the
shaker piezo-electric force sensor and either acceleration, velocity or position (the system
output).

Since the measurement of dynamic stiffness requires force and displacement, if

acceleration or velocity measurements are used, they must be converted to displacement
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by an integration. To avoid this integration, displacement can be measured directly by
using either an eddy current probe or the linear stage encoder through the controller
digital-to-analog converter (DAC). The use of the encoder data was limited by its 1um
resolution, since, at higher excitation frequencies, the shaker does not generate enough
force to result in a 1pum displacement of the stage. A subsequent increase in output
voltage to the shaker often results in an over-current situation in the motor amplifier. For
this reason, the encoder was not usable at higher frequencies (above 200 Hz). On the
other hand, in several cases, the magnitude of stage displacement was beyond the
measurement envelope of the eddy current probe, precluding its use. In all cases, the use

of the appropriate position measurement technique must be determined and applied.

Shaker

Force Gage Output
/ \ y

-— Swept Sine Wave g—— | SIGLAB <> [:]

—
\ Accelerometer Output /

—
Eddy .7 Encoder Position From
rrent Controller D/A Converter
Cu for Stiffness Analysis
Probe

Linear Stage Platform

PC Controlling Linear Stage, :]

Using Aerotech Contro! Board

—

Figure 3-2. Experimental Setup for Determination of Dynamic Stiffness.
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Since the shaker vibrates axially from its mounting point, a method of mounting it
had to be formulated. To accomplish this purpose, steel L-beam stock was mounted to
the slide and the shaker was bolted on the perpendicular portion (See Figure 3-2). To
ensure that the bracket was stiff enough for the tests being performed, simple beam
calculations were conducted for the static case. The equation for a static cantilevered
beam is given by (3-1) as shown in (35). The resulting stiffness for the beam used is 2.33
X 107 Newtons per meter—more stiff than most test cases in this research (See Figure 3-

3).
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Figure 3-3. Static Representation to Determine Bracket Stiffness.
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CHAPTER IV

PROCEDURES

To facilitate the goals of this research, procedures were developed and followed
for each subtask, from system identification to experimentally shaping the dynamic
stiffness. The following section details the procedures used to reach the conclusions of

this thesis.

System Identification

The first subtask of this research was to conduct comprehensive system
identification for the controller, amplifier and linear motor. Figure 4-1 shows the basic
structure of the system having two inputs (the command input, u and disturbance force,
F4) and one output (the stage displacement, y). The blocks on the left hand portion of the
Figure 4-1 are from the controller: Kpos is the position loop gain; Kp is the velocity loop
proportional gain; K; is the velocity loop integral gain; Vi is the velocity feedforward
gain; Ag is the acceleration feedforward gain; N represents the scaling between meters, on
which the plant is based, and machine units that the controller uses and F; is the controller
servo loop sampling frequency. The remaining blocks are part of the system plant (i.e.,
the amplifier, coil, and mass). Kpa is the preamplifier circuit of the amplifier (this gain is

bypassed when the controller performs the commutation); Ka is the amplifier current




loop gain; Ky is the current loop feedback gain; L and R are the equivalent motor coil
inductance and resistance, respectively; m is the mass of the moving forcer and payload
and b is the damping coefficient of the mechanical portion of the motor. Of primary
concern for the system is its dynamic compliance—that is—the response of the system
output displacement, Y, as a function of Fgy, the disturbance force input. The system
dynamic stiffness is the inverse of its dynamic compliance. In this research, Fyq is
provided at varying frequencies using a shaker as discussed in Chapter IIl. During

machining, Fy is generated by the cutting or grinding process itself.
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Figure 4-1. Block Diagram of Controller and Servo System.

Many of the variables in Figure 4-1 are provided by factory documentation or
were simplistically determined. Table 4-1 lists all parameters as provided and later

determined for use in the model.




Table 4-1. System Parameter Values.
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Supplied] Model

Parameter Value Value Units
Mass, Positioning Stage/Coil/Encoder 1.571 1.571 kg
Mass, Shaker Bracket /and Mounting Hardware }3.800 3.800 kg
Mass, Shaker and Bolt 3.133 3.133 kg
Motor Coil Inductance, L 0.0044 ]0.0044 H
Motor Resistance (25° C), R 11.0 12.8 Ohms
Motor Resistance (150° C), R 16.7 N/A Ohms
Motor Force Constant, K¢ 19.6 19.6 N/Amp
Motor Back EMF, Kg 15.8 1.4 V/m/s
Sampling Frequency, Fg 4000.0 ]4000.0 Hz
Amplifier Gain, K, 10.0 10.0
Pre-Amplifier Gain, Kpa N/A 0.594
Amplifier Current Feedback Gain, K¢, N/A 0.133

Controller

The first section of Figure 4-1 is the existing controller structure. The controller
used for this research is an Aerotech Unidex 500 Ultra Motion Control Card. It is
incorporated into a Pentium Processor PC through which commands are passed and
feedback monitored. The block diagram provided by the manufacturer (see Figure 4-1)
depicts a non-standard representation of the controller that combines discrete and
continuous notation. Such a non-standard approach makes control analysis and design
difficult for this system. Sampling frequency, denoted as F; in Figure 4-1, which is
normally seen as 1/T (sampling interval), is associated with the discrete time

[ ]

representation using the discrete “z” operator or the “w” operator for its bilinear

transformation. However, in this case, F; is shown in the same diagram as the continuous
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domain Laplace operator “s.” Since a digital computer carries out the control process, the
block diagram should be represented in the discrete domain. Because no data or insight
were available on the manufacturer’s rationale for such a representation, the structure of
the controller block diagram was taken at face value in the continuous-time domain.
Because frequencies considered for this research were capped at 200 Hz and the
controller sampling frequency is 4 kHz, the system has been represented and controlled in
a continuous-time framework. The Nyquist sampling criterion requires that the sampling
frequency exceed operational frequencies by at least a factor of two. This requirement
has been exceeded by a factor of ten. Future work that implements control at higher
frequencies should consider and accurately model the discrete effects of the control

system.

System Plant

The plant consists of the amplifier, motor coil and mechanical mass system. The
amplifier converts a current command voltage into a current generated at the motor coil.
The motor electrical portion consists of the coil itself where the current generated in the
presence of the magnetic field of the permanent ferrous magnets creates an electromotive
force. The electromotive force produced by the coil is then applied to the motor
mechanical portion of the system that consists only of the coil mass, stage and payload as
well as damping elements. Since the mechanical portion of the motor has no resistance

other than friction when the coil is de-energized, static stiffness is assumed to be zero.
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Figure 4-2 shows the structure of the plant where F is the disturbance force applied to the

motor mechanical block.
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Figure 4-2. Plant Block Diagram.

Because the typical approach to modeling brushless motors is very complex, and
would preclude standard analysis methods, several simplifying assumptions were made in
developing the model for this research. In general, a brushless motor is a non-linear
system because of the switching of current flow to multiple phases. In this research, the
system is modeled after a DC motor--as if only one phase was in the core. In other
words, the three-coil core is modeled as one equivalent resistance and inductance. This
assumption provides a good model for dynamic compliance as results verify. One of the
reasons why the model is valid for this application is the length of travel during testing is
limited, resulting in small motor phase angle changes.

Identification of the plant presented a unique problem in the context of the

brushless DC motor. In the standard configuration, commutation is performed by the
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controller itself and requires encoder feedback. Since encoder feedback is required for
commutation, open-loop data cannot be obtained independent of the controller. The
configuration was later modified to allow the amplifier to perform rudimentary six-step
commutation, permitting an alternate method of plant identification.

The first approach was to assemble the system depicted in Figure 4-2 in sections.
As a base-line for the system, all parameters published by the manufacturer were assumed
to be accurate. Frequency domain curve fitting was then used to modify several
parameters to refine the model. The resulting parameters are listed in Table 4-1. The
first section of the plant to be analyzed was the motor mechanical portion. Analysis of
frequency response data from force excitation input to position output provided a first
estimate of the motor mechanical parameters. Tests were performed with the coil de-
energized. The initial tests were conducted up to 2 kHz to ensure the overall shape of the
response was captured. Force input data were provided by the shaker and its force
measurement was read from the shaker’s integrated piezo-electric sensor. Measuring
position presented another challenge. Since the coil was de-energized, the positioning
stage slides freely without any feedback to keep it in a position envelope. For this reason,
an eddy current probe was ruled out because of its small measurement envelope. Another
alternative was to use the digital-to-analog converter (DAC) of the controller to send a
voltage proportional to the number of machine steps as detected by the position encoder.
This signal worked well at lower frequencies, where displacement was large—on the
order of 10 to 500 um. However, at higher frequencies, the displacement of the stage was

less than the 1-um resolution offered by the optical encoder. As a solution, low




53

frequency data were taken from 3 Hz to 200 Hz using the encoder and DAC to measure
position output and from 200 Hz to 2 kHz, displacement data were derived using
acceleration measurements. Since acceleration is the second derivative of position, a
double integration was necessary to obtain position. The integration is performed in the
Laplace domain by setting s=jo. Equation (4-2) shows how displacement data were
obtained from acceleration. Multiplication by e™ has the effect of reversing the phase by
180° which is the same as multiplication by -1.

X(s) = (4-2)

= |

g2 ls=io 0)2 2
Using a Matlab routine, developed for the purpose, low frequency data were then

combined with the higher frequency data and an overall response was obtained. A least

squares fit of the combined frequency response data to a second-order system became the

initial model. The initial model was then modified using the actual mass of the system

and setting the damping coefficient to best fit the actual response. Figure 4-3 shows the

comparison of the derived model and the actual data.
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Figure 4-3. Motor Mechanical Frequency Response vs. Model Response.

The next step was to refine the sections of the overall plant shown in Figure 4-2 at
lower frequencies. First, the amplifier was set up in the current command configuration
to perform rudimentary six-step commutation based on the Hall signals sent from the
stage. The next block to be tested was the transfer functjon from current command input

at the amplifier to force output of the stage given by (4-3).

F _ KPAKAKF
Voup Ls+R+Ky K,

(4-3)

To facilitate this test, the stage was attached to a bracket and an anchored strain
gage force sensor. The stiffness of the strain gage (1.985X10° Newtons/m) is such that

the #20-Newton force generated by the motor yields only a .1 mm displacement. In view




of this small displacement and the low frequency range used, the inertial effects of the

payload mass were ignored for these particular tests. In addition, because velocity was
limited by the small length of travel to activate the strain gage, the generated back EMF
was also neglected. Force was measured from the strain gage as the output and analyzed
with the voltage input provided to the motor amplifier by Siglab. The experimental setup

is shown in Figure 4-4.

Force Output

Strain Gage

Frequency Excitation

Phase Currents - &—© é
Amplifier

Figure 4-4. Experimental Setup to Measure F/Vemp.

Figure 4-5 shows experimental data and the model response for F/Vemp.
Agreement between the data and the model is reasonable. Note that only low-frequency
data (<35 Hz) is taken to verify the parameter values in (4-3). The low frequency data is
sufficient for this purpose and data at this range is unaffected by the poor frequency
response of the strain gage force sensor. Static tests would have been less accurate since

coil dynamics have a derivative term with respect to current (See Equation (2-1) ).
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Low Frequency F/Vemd Magnitude Data vs. Model
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Figure 4-5. Experimental and Model Response of F/Vcup.

Next, the Siglab provided a current command to the input of the plant and
measured the velocity (from the controller DAC) of the stage as the output of the plant.
Since the feedback was not connected to the current command in any way, the system was
operating open-loop, presenting a potential problem with stability. Since the position is
in no way maintained, the stage moved freely, and in an irregular fashion. However,
since current command inputs could be kept very small and were random across the
frequency range of interest, the range of stage movement remained small. This test was
performed once with only the stage and coil mass and once with the shaker and mounting
bracket. The tests were conducted for both values of mass to verify the assumption that
the different normal forces on the bearing slide due to payload mass affect the damping

coefficient of the motor mechanical block. The transfer function from current command
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to velocity output derived from manipulation of Figure 4-2 is given by Equation (4-4). A
least squares fit was performed using Matlab to fit the data obtained in these tests. The
least squares model was then used to solve for reasonable parameters in the system by
relating the coefficients of the characteristic polynomial to those given by (4-4). Figure

4-6 and Figure 4-7 show the resulting models compared to the data taken for each mass

case.

Vel K, K, Ky )
Vown  mLs® +(m(R+Kg K, ) +bL)s+(R+Kq K, )b+ KK,

: actual data
model response|

Magnituds of vel/Vernd (dB m/s/V)
)
@
38

Phase of velVemd (degrees)
1
@
=3
T

S
8

)
R
a
S
T

10°
Frequency {radians/second)

Figure 4-6. Vel/Vemp Data for Stage/Coil Mass and Derived Model.
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Figure 4-7. Vel/Vemp Data for Payload Mass and Derived Model.

Once all of the components of the system were determined, block diagram
manipulation of Figure 4-1 was accomplished to determine the transfer functions from
position command input (u) and from disturbance force input (Fg) to position output (Y).
The resulting transfer functions are given by (4-5) and (4-6), where C is a constant from
the on-board scaling of the controller and is equal to 3.436 X 10'°. Naturally, both
transfer functions share a common characteristic equation (denominator polynomial) and

by the principle of superposition, the output is additive as shown in (4-7).
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1
s’ [C—K,, K, K A ]+s*[160K,K,, K, K. V;]
Y(s) _ K

U(s)  s*CLmF, +s’[CE,(bL+ m(R + K K, )]+
+5[10K ,, K, K - Fs (K ;K pos + 16K, V)]
s2[CF, (b(R+ K K, ) + KK, ) +40960K ,, K, K, K,N]+
+10K, Ko Ko K, K F’
s[10K ,, K , K -NF, (4096K ; + K, K pos )]+ 10K, K , K K s K Fs

(4-5)

Y(s) _ s*[CLFi]
F(s) s'[CLmE]+s’[CF(bL+(R+KyK,)m)]
+s[C(R + K KR ]
+5’[CR(b(R + Ko K, ) + KK, ) +40960K,, K, K. K,N]+

(4-6)

S[10K ,, K , K. NF (4096K, + K, K pos )]+ 10NK ,, K, K K 0 K, Fs

_Y®) ) ]
YO =55V o O 47

Transfer Function Validation

Having derived (4-5) and (4-6) and substituting values of the parameters, the next
logical step is to verify the model using both time domain and frequency domain
comparisons to experimental data. The Aerotech controller does not allow the user to
supply external control inputs at high enough frequencies to perform a frequency

response analysis of the model for Y/Fy. Therefore, to validate (4-5), a step position
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command input was applied to the system. The step response was compared to the output
generated by the Simulink model representation shown in Figure 4-8. The Simulink
model allows a non-linear saturation block to approximate the current clamp applied by

the U500 controller. The resulting plot is shown in Figure 4-9.
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Figure 4-8. Simulink Model Used to Validate Transfer Function.
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Figure 4-9. System Step Response vs. Model Step Response.

Frequency response tests using the shaker for force input and measuring position
output using the U500 DAC were conducted to validate (4-6).

Figure 4-10 shows the predicted shape of the compliance curve and the actual
shape obtained. Having obtained a reasonable model of the entire system, the next step is

to explore several methods to control dynamic stiffness.
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Figure 4-10. Frequency Response Validation of Dynamic Compliance Model.

Control Strategy

The following section describes the use of several methods to control the dynamic
compliance of the system under study. At present, the only method for which
experimental results were obtained is that of varying the gains of the existing control
structure based on the model developed in the previous section. The other methods are
presented as a basis for future work. Analytical results using these methods are presented

in Chapter V.
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Choosing Controller Gains to Change Natural Frequency and Damping Ratio

The first method to control dynamic stiffness is by selecting the existing control
gains to meet a target shape. In order to choose controller gains to change damping ratios
and resonant frequencies of the compliance response, Matlab code was developed to plot
the closed-loop poles for a range of each adjustable control gain while others were fixed
at nominal values. To facilitate the use of the “rlocus” command in Matlab, the
denominator of Equation (4-6), had to be manipulated into the root locus form. The root
locus form of a generalized system is shown in Figure 4-11 (24). The transfer function of
Figure 4-11 is given by (4-8) and its root locus consists of the denominator roots as K is

varied between 0 and co.

+
~
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Figure 4-11. System Root Locus Form.
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With the goal of varying each of the adjustable gains in (4-6), manipulation is

conducted to place the denominator in the form of (4-9) for Kpos, Kp and K.

D(s)+ KN(s) =0 4-9)

For example, for Kpos (assuming unity gain feedback), the denominator of (4-6) becomes

D(s) + K,osN(s) = 0 (4-10)

where
D(s) = s*[CLmF,] +s’[CF,(bL + (R + K K, )m)]+---
S’[CRs(b(R+K K, ) +KK;)+40960K,, K, K, K, N]+---  (4-11)
s[40960K ,, K , K NF,K, ]
and

N(s) = s[10K,, K , K.NF,K, ]+ 10NK,,, K, K K F,” (4-12)

This tool is useful in choosing a desired damping ratio for a given set of control
gains. For example, by varying the value of the position loop gain, Kpps, one can see

from Figure 4-12 that damping is decreased with increasing gain and that, eventually, the
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poles cross the imaginary axis and become unstable. Inspection of Figure 4-12 shows
that the scaling of the real and imaginary axes is not square as would be expected from a
typical root locus plot. The figure has been magnified and its scaling adjusted to fill the
available plot area for visualization of root behavior. Using the “rlocfind” function of
Matlab, one can easily determine the value of Kpos for any given position on the root
locus plot. This feature is especially useful in determining the stability limit for each gain

by determining the value of gain at the imaginary axis crossing point.

Pole Locations of y/Fd When Varying KPOS
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Figure 4-12. Plot of Closed-Loop Pole Locations with Varying Position Loop Gain.

(Note: Fast Pole at s=-3000 is not shown in this plot).

To determine values of gain in a more systematic manner and generate a target

frequency response, several assumptions were made to simplify analysis. Although the
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closed-loop transfer function for dynamic compliance is fourth order, its transient
frequency response is assumed to be dominated by the two complex conjugate poles in
Figure 4-12 (24). Second order approximations based on the two complex poles were
used to determine damping ratio, & and the corresponding natural frequency, @y, at which
the resonant peak approximately occurs. This assumption was used only in calculating
controller gains to meet approximate values for & and ®,. The full fourth-order model
was used to determine the actual locations of the poles as well as the frequency responses

of the model.
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Figure 4-13. General Root Locus Plot and Second Order Approximation of & and wy.

Figure 4-13 shows how ®, and & are calculated using the second order

approximations of (4-13) and (4-14).
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0, 1-E> 1
tan@=—nV "5 g ‘/————-—— 4-13
o Ew, =& tan’ 6 +1 (13

_ real(pole)
§

Re(pole) =&, = 0, (4-14)

Knowledge of approximate values of ®, and &, (based on the second order
approximation) gives an indication of the resonant frequency and the relative amplitude
of the resonant peak, respectively. This approximation works reasonably well in
predicting the resonant frequency of dynamic compliance as demonstrated in Chapter V.
A recursive Matlab routine, based on the assumption of complex pole dominance was
developed to find a set stable gains that moves the complex poles to most closely achieve
the desired damping ratio or resonant frequency. The algorithm used is similar to that
described by the method of inequalities in Chapter II.

It is possible to predict the regions of the root locus for which the assumption of
complex conjugate pole dominance is valid. In general, the poles that are closest to the
imaginary axis dominate a response, because they correspond to transient response terms
that decay more slowly (25). Therefore, when the complex conjugate poles are closer to
the imaginary axis than the third pole on the real axis, they will dominate the response.
Using the same analytic tool developed to generate Figure 4-12, ranges of controller gains

were determined which resulted in pole locations where the real-axis pole is further from
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the imaginary axis by a factor of 3. The selection of this relative factor is arbitrary and is
chosen only to provide an approximate range for the validity of the second order
assumption. The ranges determined for validity of the second-order approximation are
given in Table 4-2.

Table 4-2. Controller Gain Ranges for Validity of 2nd-Order Approximation.

Range for 2"-Order
Approximation Validity

Kpos >200
K| >2400
Kp 30000-140000

Force Feedforward Controller

To provide an alternative control structure that may be implemented with minimal
change to the existing setup, the following disturbance feedforward control concept was
developed, where Kggn is the force transducer sensitivity and Ggr is the force

feedforward controller.
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Figure 4-14. Layout of Proposed Force Feedforward Controller.

To effectively cancel the effect of the disturbance force, the ideal structure of Ggr
is given by (4-15). However, since the result is an improper system (i.e., the numerator is
of higher order than the denominator), the system is not physically realizable. As a
simple alternative, the structure of (4-16) is proposed. The result is a simple first order
lead compensator. Equation (4-16) is reasonable when the overall loop gain of F/Vcoump
>>1 and dominates the denominator of (4-16). Analytical results of the force feedforward

controller were determined for the system in Figure 4-14 and are presented in Chapter V.

R+Ky K
Go=_ L __ LstRIKqK, w1
{ F } KPAKAKF
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L
G, = 1 __ s+R+K, K, (4-16)
1+{ F } Ls+R+Kq K, +K,;, K, K;

VCMD

An additional alternative to (4-16) is to invert the plant and then add “fast poles” to the

resulting feedforward controller to make the system a proper one.

LOG/LTR

Because of the arguments presented in Chapter II, the LQG/LTR strategy was
chosen to determine an optimal and robust controller.  Disturbance rejection
characteristics of the position loop for the system can be shaped in the frequency domain

using this technique.

+ E(s) U(s) Y(s)
R(s) K(s) > G(s) >

Figure 4-15. Controller/Plant Form of Block Diagram.

First, the system plant was isolated—that is—the amplifier, and the motor

mechanical portion. The plant is given by:
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y_ KK K¢
u  Lms®+(bL+(R+K,K,)m)s* +(b(R+KyK,)+K:Ky)s

4-17)
To facilitate the use of the multivariable LQG control, (4-17) was converted into

state space form by multiplying the numerator and denominator by a “dummy” variable,

Q(s).

Defining:

X, = q(t) = x,(t) = X, (t)
X, =q(t) = X, (t) = x,(t)

—(bL+m(R+ K K,)) () — (b(R+ K K, )+ KeKs)

X3 =q4(t) = X,(t) = 5(t) X, (t) +u(t)
Lm Lm

y(t) = Kpa K, Kex, (1)
Placing the above into matrix form:

0 1 0 0
x(t)={0 0 1 x(t)+| 0 [u(t)

0 -(b(R+K4K,)+KKp) —-(bL+m(R+KyK,)) _1_

Lm Lm Lm

(4-18)
y(t) =[Kp K, K 0 0]x(0)

The next step of the design process is to design the target feedback loop (TFL).
The target feedback loop should display the characteristics of the desired closed-loop

transfer function. To choose the gain matrix for the TFL, a Kalman filter was designed
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by varying the covariance matrices W, and V,. In the SISO case of the linear motor
system, these matrices correspond to constant terms. Matlab code was developed to
determine Kalman Filter gains and plot the sensitivity and closed-loop principal gains of
the resulting target feedback loop.

To assess performance, in addition to closed-loop response, one can inspect the
principal gains of the sensitivity and closed-loop or complementary sensitivity to predict
performance with regard to tracking and disturbance rejection. There is a tradeoff
between the bandwidth of the system response to inputs and low sensitivity to disturbance
inputs. Sensitivity of the nominal system shown in Figure 4-15 to a disturbance at the

output is given by

1
S() =———— 4-19
® 1+ G(s)K(s) 19
and the closed-loop or complementary sensitivity is given by
T(s) =S OKE) (4-20)
1+ G(s)K(s)

It is easily demonstrated that

T(s) +S(s) =1 (4-21)
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What (4-21) says is that even if sensitivity to disturbance, S(s), approaches zero,
the gain of closed-loop transfer function, T(s), approaches unity and will have a sluggish
response (33). This tradeoff is illustrated by manipulation of the linear motor system of
Figure 4-16. To maximize dynamic stiffness, one aims to minimize the principal gain of

the system sensitivity, while understanding that the tracking response will suffer.

Sensitivity and Closed Loop Principal Gains When Wn = 1000000 and Vn = 1
T T
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Figure 4-16. Sensitivity and Closed-Loop Principal Gains for One TFL.

Once the Kalman filter gains yield a desirable TFL, the next step is to design the
LQG controller. The tradeoff here is accomplished by adjusting the control cost function,
R. A low control cost function will result in a controller that nearly recovers the TFL, but
demands high levels of control energy and may result in saturation or excessive heat

generation.
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Placing Existing Controller Poles as Close as Possible to LOG/LTR Controller

In the attempt to use the LQG/LTR technique on the fixed U-500 controller
structure, it is first necessary to manipulate the block diagram given in Figure 4-1 to be in
the form of Figure 4-15. After this manipulation, the resulting K(s) has 5 zeros and 4
poles whereas the resulting LQG/LTR controller from above has 2 zeros and 3 poles.
There is no known method of molding the existing controller to directly correlate to the
optimal design directly, given that they are of different order. Consequently, this

approach was abandoned for this research.

Conversion to Discrete-Time System for Digital Control

Because the ultimate goal of this research is to provide a control system that is
straightforward to implement, some analysis was performed in the discrete domain to
develop a model for use in a digitally implemented open-architecture control.

The first task was to convert the model of servo system to discrete time. To

facilitate doing so, one could first apply the zero order hold to the system:

y K, K, K (1 —eT
u

= A (4-22)
LMs® +(bL+m(R + K, K, ))s> + (bR + K K, ) +KKp)s\ s
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Recalling that (1 - St ) = (z-1)/z and moving the s from the zero order hold as

part of G(s), the resulting z-transform will be:

G(z) = (Z“ 1)2 - KeaKaRe -1 (4-23)
z ) |LMs* + (bL+m(R + K K, ))s* + (bR + K¢ K, ) + K Ky)s

Chapter Conclusion

This chapter has provided a synopsis of the procedures used to identify and
control the linear motor system’s dynamic compliance. The experimental results of the
fixed-structure controller as well as theoretical results of the alternative control

approaches are presented in the following chapter.




76

CHAPTER V

RESULTS FOR DYNAMIC STIFFNESS MODULATION

Many of the results of this research are contained in Chapter IV as system
identification was one of the major steps in the process. The following results show that
the general shapes of the linear motor dynamic stiffness (as shown by its inverse—
dynamic compliance) can be shifted toward objective shapes by adjusting controller
gains. The results also demonstrate that the model predicts the dynamic compliance
profiles reasonably well as various parameters are changed.

In addition to the experimental results using the Aerotech controller gains,
analytical results are presented for the force feedforward and LQG/LTR controllers

proposed in Chapter IV to motivate future implementation.

Changing Control Gains of Fixed Controller

Figure 5-1 shows the dynamic compliance of the system when the recommended
factory-tuned gains as provided by the manufacturer are implemented. Agreement
between model and experimental data is excellent in terms of the location and magnitude
of the resonant peak. Low frequency agreement falters, but is attributed to poor

coherence of the shaker data taken (below 0.5 below 50 rad/sec).
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The goal of the first adjustment was to limit the peak of Figure 5-1. Reduction of

the position loop gain, Kppg served to increase damping by moving the complex poles

closer to the real axis. The resulting compliance profile is shown in Figure 5-2.




Shifting Resonant Frequency and Damping Ratio
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Next, specific objectives for varying the damping ratio and shifting the resonant

frequency to target locations are undertaken. Figure 5-3 shows the resulting dynamic

compliance when a damping ratio of 0.05 was sought. As would be expected, a large

resonant peak is present and coincides reasonably well with the profile predicted by the

model. Figure 5-4 shows the profile obtained when a damping ratio of 0.95 is sought.

The result correlates well to a high damping ratio as there is no visible peak in the profile

and the response appears smooth across the frequency range.
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Figure 5-3. Experimental and Model
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Response for £=0.95.

Figure 5-5 through Figure 5-10 are the compliance profiles resulting from the

gains computed to target specific resonant frequencies. Figure 5-5 shows the most
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obvious mismatch between the response predicted by the model and that obtained

experimentally.
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The control gains used in obtaining Figure 5-5 through Figure 5-10 are given in

Table 5-1. The trend illustrated is that to obtain higher resonant frequencies based on the

second-order assumption of the dominant complex poles, overall loop gain must be

higher.

Table 5-1. Control Gains Used for Target Resonant Frequencies.

Target m, (rad/sec) 50 100 200 250 300 400
Keos 1 1 120 240 250 400
K 1300 5000 1600 1400 2100 4700
Kp 0 150000 | 520000 | 400000 | 550000 | 550000
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Analytical Results for LOG/LTR

To demonstrate how the LQG/LTR method can analytically change the dynamic
compliance, analytical results are obtained using this technique. The following
simulation results are presented to show the general effect of changing design parameters,
W, V and R. Principle gains of the closed-loop sensitivity and complementary closed-
loop sensitivities are plotted beside each analytical dynamic compliance response to
illustrate the impact of the adjustments on the tradeoff between disturbance rejection and

closed-loop performance.

Sensitivity and Closed-Loop Principal Gains When Wn = 1000 and Vn = 1
T = T T

- Closed-Loop
——  Sensitivity

Magnitude of Y/Fd (d8 mMN)
 Magnitide of YIFd (48 mA
33888884

10°

A

Phase of Y/Fd {degrees)
) . f

Figure 5-11. LQG/LTR Results with Wn=1000, V=1 and R=1.
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Sensitivity and Closed-Loop Principal Gains When Wn = 1000000 and Vi = 1 LQGALTR Dynamic Complance with Wn=1000000; Vn=1 and R=18-010
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Figure 5-12. LQG/LTR Results with Wn=10°, V,=1 and R=10"°,

Senskivity and Closed-Loop Principal Gains When Wn = 1000000 and Vn = 16-008 LQGATR ; Vn=16-006 and R=16-015
T T T 0

T
- Closed-Loop
: | ——  Sensitivity

L
8

]
3
T

g

Magritudo of Y/Fd (d8 mN)
Pkt
H

Phase of Y/Fd (degrees)
| .
8
T

Froquency (radians/second)

Figure 5-13. LQG/LTR Results with Wn=10°, V,=10° and R=10"".

Before attempting to implement the control illustrated above, one must temper the
objectives with the constraints posed by the limits of control energy and gain. For

example, in Figure 5-13, tremendous control energy is required because the cost of
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control, R, was given a very low value. Consequently, the resulting closed-loop system
results in complex poles in the neighborhood of s=-3000 + 4500j. The highest gains used
on the fixed Aerotech controller moved the pair of complex poles to only s = -125 + 225j.
One can, therefore, deduce that the profile shown by Figure 5-13 would require very large

inputs and is, therefore, probably not physically realizable.

Force Feedforward Control

Analytically, the first order feedforward controller proposed in Chapter IV
decreased dynamic compliance (increased dynamic stiffness) by approximately 25 dB for
every frequency in the experimental range. Despite the attenuation of the dynamic
compliance magnitude, the controller had little effect on the dynamics (i.e., the shape) of

the compliance.
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CHAPTER VI

DISCUSSION/CONCLUSIONS

Challenges for Modulating Dynamic Stiffness

The shaping of dynamic compliance (and therefore dynamic stiffness) presents a
unique problem from most topics addressed in existing control literature. Most research
conducted in the area of “loop shaping” deals with the response to a direct control input
to the system and addresses only the system’s ability to minimize the disturbance
response. The response to the disturbance can, therefore, not be controlled in a direct
sense since we cannot alter the input itself. Control is applied through feedback to reduce

the effect of the disturbance on the plant.

Assessment of Model Performance

The experimental results of Chapter V demonstrate that the shape of dynamic
compliance response can be altered and that the model generally predicts the shape.
There are several factors which affect model performance. The model is least accurate at
low frequencies. First, since the force sensor on the shaker is a piezoelectric element
designed for dynamic force measurement, low frequency force measurement data is
generally less accurate. Also, the force applied by the shaker is proportional to excitation

frequency squared. As a result, the magnitude of the force applied to the stage at low
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frequencies is much smaller than at higher frequencies and may not provide ample
excitation of the system for measurement. Another factor at low frequencies is the
possibility of stiction on the linear bearing track because the force level may not be high
enough to completely overcome static friction with each change of direction.

Besides low frequency mismatch, the model displayed decreased performance at
lower controller gains like those used to generate Figure 5-5. The lower gains applied to
the system tend to move the complex poles closer to the real axis. As these poles
approach the real axis, the parameter sensitivity approaches infinity and any model

inaccuracies are amplified (36).

Predicting Damping Ratios and Resonant Frequencies

The algorithm used to select control gains to meet target damping ratios and
natural frequencies, as described in Chapter IV, is based on a second order approximation
and assumes that the complex poles of the compliance dominate the response. At certain
gain values, the approach used to predict the location of the resonant frequency deviates
from both the 4™ order model and the experimental results because the complex poles
move farther away from the imaginary axis and the pole on the real axis dominates the
transient response. By comparing the gains in Table 4-2 with those in Table 5-1, one can

predict whether or not the second-order approximation is valid.
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Limitations of Fixed-Structure Controller

A limiting factor of this research was the use of the Aerotech control structure.
The scaling and fixed PI structure of only the velocity loop limited the ability to shape
dynamic compliance. Figure 6-1 through Figure 6-3 show the limited effect control gains
have on the dynamic compliance profile. The plots show the gain of dynamic compliance

varying one control parameter at a time, while holding others at a nominal value.

Frequency Response Varying Kl from 1 to 10000

KI Frequency (r/s)-— Power of Ten

Figure 6-1. Dynamic Compliance Across Range of K|.
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Assessing the Usefulness of Alternate Control Approaches

Although LQG/LTR is a valuable control tool, its main objective is to shape the
response of a control input. As such, the main drawback to the use of the LQG/LTR
approach is that, in its goal to shape command following and disturbance rejection, there
is no immediate correlation of a TFL to dynamic compliance. Instead, compliance must
be backed out as a consequence of the command-following objective function. If the goal
is to directly shape the disturbance transfer function, one must first design for the level of
open-loop disturbance sensitivity. After determining an acceptable level of sensitivity,
the next step is to design the controller. The last step is then to back out the disturbance
response. This process is far from a direct approach for compliance control. One could
look at the problem as a regulation problem (i.e., no commanded input) and manipulate
the block diagram of the system to fit the structure of Figure 4-15 where F;y is the input.
Before proceeding on this approach, however, it is vital to review the overall problem.
The disturbance in this context is not a signal--it is a force and acts on the mechanical
portion of the system. As such, one cannot disconnect the disturbance from the
mechanical section of the plant, even though it seems possible ih a matheﬁatical context
through block diagram algebra. Some investigation could be conducted to determine the
applicability of LQG/LTR or similar technique in the design of a force feedforward
controller to obtain a desired response. |

The feedforward controller has the potential for increasing the stiffness, but one

must look at the possibility of saturating the amplifier in a particular application. The
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non-linear saturation could reduce the system stability. Also, as analytical results
indicated, the design presented had no effect on the shape of the response—only its
scaling. As mentioned above, some investigation should be conducted into the feasibility

of frequency response shaping by the use of a more sophisticated feedforward controller.

Conclusion

Machining research has established that dynamic stiffness is the primary factor in
determining the quality of a machine tool’s finished parts, and the stability and efficiency
of the machining process.

Recent advances have made brushless linear motors the subject of close
inspection and assessment by the machine tool industry for use as main feed mechanisms.
Inherent benefits of brushless linear DC motors include extremely accurate positioning,
high velocity and acceleration as well as the elimination of nonlinearities such as
backlash and hysteresis. Fewer moving parts also mean less maintenance and fewer
components to fail. Although these benefits have prompted several manufacturers to
employ linear motors as main feed mechanisms in some machine tools, the ability to
shape the dynamic stiffness profile of the machine tool is one important benefit that has
largely been unexplored.

This research has shown that dynamic stiffness of the linear drive system can, in
fact, be modeled reasonably accurately and can be altered by changing nothing more than

controller parameters. Such reshaping of the dynamic stiffness for a traditional machine
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tool feed mechanism would not be possible except by the complete restructuring of its
mechanical components.

The experimental results of this research shown in Chapter V demonstrate the
ability to alter dynamic compliance (and therefore dynamic stiffness) to meet approximate
target shapes. Resonant peaks can be moved to different frequencies, reduced or
eliminated by changing control gains.

The use of the fixed-structure controller limits the ability to shape the response.
The analytical results of the feedforward controller and LQG/LTR controller show that

other structures may have more success in shaping the response to fit desired profiles.
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CHAPTER VII

RECOMMENDATIONS FOR FUTURE WORK

In pursuing the overall goal of optimizing dynamic stiffness for a machining

process, the following recommendations are provided.

Use a Linear Motor in a Machining Process to Assess Its Relative Merits

To connect the results obtained in this research to the machining process, a linear
drive should be employed to perform a simple machining operation as in (1). By
performing analysis on the actual machining process, results could be compared to those
obtained from conventional feed mechanisms to assess any benefits derived from
dynamic stiffness shaping. Some consideration should be given to the use of a drive
system with higher current capacity to allow realistic levels of cutting or grinding forces
without saturation of amplifier and motor dynamics. The linear drive used in this

research can deliver a constant force of only 53 Newtons (12 1bs.).

Open-Architecture Controller

To obtain experimental results for variable control configurations without
extensive hardware or circuitry changes, an open-architecture state space controller
should be developed to digitally implement a given control structure. Such a controller

would allow experimentation using a variety of control approaches and subsequent
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determination of the best structure for the shaping of dynamic stiffness. This controller

would also facilitate the goal of experimentation on tracking control as discussed below.

Develop Tracking Control Concurrently to Optimize Tradeoff with Compliance Control

This research has focused exclusively on dynamic stiffness. No consideration was
given to the resulting control’s effect on position tracking. A method for characterizing
and optimizing the tradeoff between tracking control and dynamic compliance shaping

for a given machining process should be developed.

Model Brushless Motor Phases

As mentioned in Chapter IV, simplifications were made in the development of the
brushless motor model. Future work should incorporate the non-linear effect of three-
phase current commutation. The dependence of current developed in the motor coil on
phase angle provides a challenge in developing .a traditional model. One possible
suggestion is the use of Simulink to model the nonlinearities presented from phase

dependence, magnetic flux saturation and cross-inductance of the three coils.




94

REFERENCES

(1) Alter, David M. Control of Linear Motors for Machine Tool Feed Drives. Doctoral
Thesis, University of Illinois, Urbana-Champaign, 1994.

(2) Handbook for Brushless Motors and Drive Systems. Kollmorgen Inland Motor,
Radford, Va.

(3) Slemon, Gordon R. Electric Machines and Drives. Reading: Addison Welsley
Publishing Company, Inc., 1992.

(4) Pillay, Pragasan and Krishnan, R. Modeling of Permanent Magnet Motor Drives.
IEE Transactions on Industrial Electronics, vol. 35, No. 4, pp 537-541, November, 1988.

(5 Basak, Amitava. Permanent Magnet DC Linear Motors. Oxford: Clarendon Press,
Inc., 1996.

(6) Eidelberg, Boaz. The Linear Motor Option. Power Transmission Design., April,
1996, pp. 37-40.

(7) Beradinis, Lawrence A., and Gyorki, John R.. Electric Drives: Gearing Up for
Instant Automation. Machine Design, April 18, 1994, pp. 46-51.

(8) Aronson, Robert B. Attack of the Linear Motors. Manufacturing Engineering, May
1997, pp. 60-71.

(9) Aronson, Robert B. Machine Tool 102: Way Design. Manufacturing Engineering,
January 1995, pp. 41-47.

(10) Valenti, Michael. Machine Tools Get Smarter. Mechanical Engineering, November
1995, pp 71-75.




95

(11) Serway, Raymond A. Physics for Scientists and Engineers. Philadelphia: Saunders
College Publishing, 1986.

(12) Rivin, Eugene 1. and Kang, Hongling. Improvements of Machining Conditions for
Slender Parts by Tuned Dynamic Stiffness of Tool. International Journal of Machine
Tools Manufacturing. Vol. 29, No. 3. pp. 361-376, 1989.

(13) Kelson, Z.Y. Yen and Hsueh, Wen C. Suppression of Chatter Vibration Inner-
Diameter Cutting. JSME International Journal, Series C, Vol. 39, no. 1, pp. 25-33. 1996.

(14) Esayed, M.A., et al. Evaluation of Process Damping and its Effect on Stability in
Turning. Engineering Systems Design and Analysis Conference, Vol. 9, pp. 83-92. 1996

(15) Alter, D.M. and Tsao, Tsu-Chin. Stability of Turning Processes with Actively
Controlled Linear Motor Feed Drives. Transactions of the ASME., Vol. 116, pp.298-
307, August, 1994.

(16) Xu, Ming and Birchmeier, John R. Dynamic Stiffness Testing and Its Applications
in Machine Tools. Sound and Vibration, pp. 14-23. June 1997.

(17) Jenkins, Hodge E. and Kurfess, Thomas R. Dynamic Stiffness Implications for a
Multi-Axis Grinding System. Journal of Vibration and Control, vol. 3, no. 3, pp. 297-313.
Thousand Oaks CA: Sage Sci Press USA, Aug 1997.

(18) Elbestawi, M.A. and Sagherian, R. Dynamic Modeling for the Prediction of Surface
Errors in the Milling of Thin-Walled Sections. Journal of Materials Processing
Technology. Vol. 25, (1991) pp. 215-228.

(19) Lee, Hwa Soo and Furukawa, Yuji. On the Method to Determine Dynamic Stiffness
of Grinding Machines. Bulletin of the Japanese Society of Precision Engineering. Vol.
22, No. 2, June 1988.




96

(20) Franklin, G.F., Powell, J.D. and Workman, M.L. Digital Control of Dynamic
Systems. Reading, MA: Addison-Wesley Publishing Company, 1994.

(21) Matlab Signal Processing Toolbox User's Guide. Natick, MA: The Mathworks,
Inc., 1996.

(22) Tung, Ka-Lun, and Yam, Yeung. System Identification and Control Synthesis for a
Benchmark Problem. IEEE Transactions on Control Systems Technology, vol. 6, No. 1,
pp. 103-110, January, 1988.

(23) Egami, Tadashi and OkaBayashi. Disturbance Supression Control With Preview
Action for a Linear DC Brushless Motor. Electrical Engineering in Japan, Vol 113, No.
6, 1993, pp. 122-130.

(24) Phillips, Charles L. and Harbor, Royce D. Feedback Control Systems. Englewood
Cliffs, NJ: Prentice-Hall, 1988.

(25) Ogata, Katsuhiko. Modern Control Engineering. Englewood Cliffs, NJ: Prentice
Hall, 1990.

(26) Ohishi, Kiyoshi. Robust Control of a DC Servomotor Based On Linear Adaptive
Control System. Electrical Engineering in Japan, Vol. 108D, No. 1, January, 1988, pp.
39-45.

(27) Athans, Michael . A Tutorial on the LOG/LTR Method. Proceedings of the
American Control Conference., pp. 1289-1296. New York: IEEE, 1986.

(28) Phillips, Charles L., and Nagle, H. Troy. Digital Control System Analysis and
Design. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1990.




97

(29) Byms, Edawrd V., Jr, and Calise, Anthony J. Further Development of an
Approximate Loop Transfer Recovery Methodology for Fixed Order Dynamic
Compensator Design. Optimal Control Applications and Methods, Vol. 15, pp. 123-132,
1994,

(30) Shafai, B, Keel, L.H., and Beale, S.. Zero Assignment and Loop Transfer Recovery
in the LQG design. Proceedings of the 29™ Conference on Decision and Control , vol. 3,
pp- 1217-1221. Piscataway, NI: IEEE, 1990.

(31) Bainum, P.M. and Tan, Z.. The Digital LOG/LTR Controller with a Compensated
Observer for a Tethered Reflector/Antenna System. Acta Astonautica, vol. 38, pp. 15-23.
Great Britain: Elsevier Science, Ltd, 1996.

(32) Grimble, M.J. H,, Controllers with a PID Structure. Journal of Dynamic Systems,
Measurement and Control, Vol. 112, pp. 325-336, September, 1990.

(33) Maciejewski, J.M. Multivariable Feedback Design. Wokingham, UK: Addison-
Wesley Publishers, Ltd., 1994.

(34) Alter, David M. and Tsao, Tsu-Chin. Dynamic Stiffness Enhancement of Direct
Linear Motor Feed Drives for Machining. Proceedings from the American Control
Conference, pp. 3303-3307. June 1994.

(35) Gere, James M, and Timoshenko, Stephen P. Mechanics of Materials. Boston:
Kent Publishing Company, 1984.

(36) Kurfess, T.R., and Nagurka, M.L. A Geometric Representation of Root Sensitivity.
Journal of Dynamic Systems, Measurement and Control, Vol. 116, pp. 305-309, June,
1994,




